DAVID GRAYS CARBARYL 500 FLOWABLE INSECTICIDE Australia - English - APVMA (Australian Pesticides and Veterinary Medicines Authority)

david grays carbaryl 500 flowable insecticide

david gray & co. pty limited - carbaryl - suspension concentrate - carbaryl carbamate-methylcarbamate active 500.0 g/l - insecticide - apple | apricot | beetroot | cereals | commercial area - general | cucurbit | domestic and/or public area | duboisia or corkwood - armyworm | australian plague locust | bee | bronze orange bug | budworms | cabbage moth | cabbage white butterfly | cluster caterpillar | codling moth | cornelian butterfly | cucurbit stemborer | cutworm | cutworm - agrotis spp. | english wasp | european earwig | european wasp | fig leafhopper | flea | fruit thinning | grass caterpillar | grasshopper | green treehopper | green vegetable bug | helicoverpa spp. | leaf-eating ladybird - epilachna spp. | leafhopper | light brown apple moth | lucerne flea | lucerne leafroller | macadamia nut moth | macadamia nutborer | macadamia twig girdler | migratory locust | moth | orange fruit borer | oriental fruit moth | pasture cockchafer | pear and cherry slug | pearleaf blister mite | pinkwax scale | plague locust | planthopper | potato moth | pumpkin beetle | rutherglen bug | sandal-box hawk moth | sitona weevil | spined or larger horned citrus bug | tobacco beetle | tobacco leafminer | twentyeight-spotted potato ladybird | white wax scale | wingless grasshopper | yello

DAVID GRAYS PERMETHRIN ANT DUST Australia - English - APVMA (Australian Pesticides and Veterinary Medicines Authority)

david grays permethrin ant dust

david gray & co. pty limited - permethrin (25:75::cis:trans) - dust - permethrin (25:75::cis:trans) pyrethroid active 10.0 g/kg - insecticide - domestic premises | food preparation and/or storage area | hide and skin preparation pest control | industrial and/or domestic p - ant | bed bug | cockroach | flea | hide beetle - dermestes ater | potato moth | sciarid fly | silverfish | subterranean termite - coptotermes spp. | argentine ant | bedbug | bradysia spp. | ctenocephalides spp. | ground fleas | large cockroach | pharaoh ant | potato tuber moth | small cockroach | tobacco leafminer

DAVID GRAYS SCRAM INSECT REPELLANT LOTION TROPICAL STRENGTH Australia - English - APVMA (Australian Pesticides and Veterinary Medicines Authority)

david grays scram insect repellant lotion tropical strength

david gray & co. pty limited - n-octyl bicycloheptene dicarboximide; di-n-propyl isocinchomeronate; diethyltoluamide - lotion - n-octyl bicycloheptene dicarboximide bicyclo active 40.0 g/l; di-n-propyl isocinchomeronate benzene active 20.0 g/l; diethyltoluamide insect repellent active 191.0 g/l - household insecticide - pest control - personal use - fly | leech | mosquito | sand fly (biting midge) | tick | adult mosquitoes

DAVID GRAYS INSECT KILLER Australia - English - APVMA (Australian Pesticides and Veterinary Medicines Authority)

david grays insect killer

david gray & co pty limited - bioresmethrin; tetramethrin - aerosol - bioresmethrin pyrethroid active 0.7 g/kg; tetramethrin pyrethroid active 3.6 g/kg - household insecticide - domestic pest control | garden shed | homestead | houses | outbuildings - cockroach | flea | fly | midge | mosquito | silverfish | adult mosquitoes | ctenocephalides spp. | ground fleas | large cockroach | small cockroach

DAVID GRAYS POWDERED SULPHUR Australia - English - APVMA (Australian Pesticides and Veterinary Medicines Authority)

david grays powdered sulphur

david gray & co. pty limited - sulfur - powder - sulfur mineral-sulfur active 1000.0 g/kg - fungicide - citrus | flower | marrow | pawpaw | pumpkin | vegetable | vine | berry | bulb vegetable | cole vegetable | cucurbit | fruiting c - black spot - colletotrichum acutatum | citrus rust mite or maori mite | mite | powdery mildew | rust | anthracnose | spider mite

GADAVIST- gadobutrol injection United States - English - NLM (National Library of Medicine)

gadavist- gadobutrol injection

bayer healthcare pharmaceuticals inc. - gadobutrol (unii: 1bj477io2l) (gadolinium cation (3+) - unii:azv954tz9n) - gadavist is indicated for use with magnetic resonance imaging (mri) in adult and pediatric patients, including term neonates, to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system. gadavist is indicated for use with mri in adult patients to assess the presence and extent of malignant breast disease. gadavist is indicated for use in magnetic resonance angiography (mra) in adult and pediatric patients (including term neonates) to evaluate known or suspected supra-aortic or renal artery disease. gadavist is indicated for use in cardiac mri (cmri) to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in adult patients with known or suspected coronary artery disease (cad). gadavist is contraindicated in patients with history of severe hypersensitivity reactions to gadavist. gbcas cross the placenta and result in fetal exposure and gadolinium retention. the human data on the association between gbcas and adverse fetal outcomes are limited and inconclusive (see data) . in animal reproduction studies, although teratogenicity was not observed, embryolethality was observed in monkeys, rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 times and above the recommended human dose. retardation of embryonal development was observed in rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 and 12 times, respectively, the recommended human dose (see data). because of the potential risks of gadolinium to the fetus, use gadavist only if imaging is essential during pregnancy and cannot be delayed. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and is 15 to 20%, respectively. contrast enhancement is visualized in the placenta and fetal tissues after maternal gbca administration. cohort studies and case reports on exposure to gbcas during pregnancy have not reported a clear association between gbcas and adverse effects in the exposed neonates. however, a retrospective cohort study, comparing pregnant women who had a gbca mri to pregnant women who did not have an mri, reported a higher occurrence of stillbirths and neonatal deaths in the group receiving gbca mri. limitations of this study include a lack of comparison with non-contrast mri and lack of information about the maternal indication for mri. overall, these data preclude a reliable evaluation of the potential risk of adverse fetal outcomes with the use of gbcas in pregnancy. gbcas administered to pregnant non-human primates (0.1 mmol/kg on gestational days 85 and 135) result in measurable gadolinium concentration in the offspring in bone, brain, skin, liver, kidney, and spleen for at least 7 months. gbcas administered to pregnant mice (2 mmol/kg daily on gestational days 16 through 19) result in measurable gadolinium concentrations in the pups in bone, brain, kidney, liver, blood, muscle, and spleen at one month postnatal age. embryolethality was observed when gadobutrol was administered intravenously to monkeys during organogenesis at doses 8 times the recommended single human dose (based on body surface area); gadobutrol was not maternally toxic or teratogenic at this dose. embryolethality and retardation of embryonal development also occurred in pregnant rats receiving maternally toxic doses of gadobutrol (≥ 7.5 mmol/kg body weight; equivalent to 12 times the human dose based on body surface area) and in pregnant rabbits (≥ 2.5 mmol/kg body weight; equivalent to 8 times the recommended human dose based on body surface area). in rabbits, this finding occurred without evidence of pronounced maternal toxicity and with minimal placental transfer (0.01% of the administered dose detected in the fetuses). because pregnant animals received repeated daily doses of gadavist, their overall exposure was significantly higher than that achieved with the standard single dose administered to humans. there are no data on the presence of gadobutrol in human milk, the effects on the breastfed infant, or the effects on milk production. however, published lactation data on other gbcas indicate that 0.01 to 0.04% of the maternal gadolinium dose is present in breast milk and there is limited gbca gastrointestinal absorption in the breast-fed infant. gadobutrol is present in rat milk (see data). the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for gadavist and any potential adverse effects on the breastfed infant from gadavist or from the underlying maternal condition. in lactating rats receiving 0.5 mmol/kg of intravenous [153 gd]-gadobutrol, 0.01% of the total administered radioactivity was transferred to the pup via maternal milk within 3 hours after administration, and the gastrointestinal absorption is poor (approximately 5% of the dose orally administered was excreted in the urine). the safety and effectiveness of gadavist have been established in pediatric patients, including term neonates, for use with mri to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system and for use in mra to evaluate known or suspected supra-aortic or renal artery disease. use of gadavist in these indications is supported by adequate and well-controlled studies in adults and supportive imaging data in two studies in 135 patients 2 to less than 18 years of age and 44 patients less than 2 years of age with cns and non-cns lesions, and pharmacokinetic data in 130 patients 2 to less than 18 years of age and 43 patients less than 2 years of age, including term neonates [see clinical pharmacology (12.3) and clinical studies (14.1)] . the frequency, type, and severity of adverse reactions in pediatric patients were similar to adverse reactions in adults [ see adverse reactions (6.1)] . no dose adjustment according to age is necessary in pediatric patients [see dosage and administration (2.1), clinical pharmacology (12.3), and clinical studies (14.1)] . the safety and effectiveness of gadavist have not been established in preterm neonates for any indication or in pediatric patients of any age for use with mri to assess the presence and extent of malignant breast disease, or for use in cmri to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in patients with known or suspected coronary artery disease (cad). no case of nsf associated with gadavist or any other gbca has been identified in pediatric patients ages 6 years and younger. pharmacokinetic studies suggest that clearance of gadavist is similar in pediatric patients and adults, including pediatric patients age younger than 2 years. no increased risk factor for nsf has been identified in juvenile animal studies of gadobutrol. normal estimated gfr (egfr) is around 30 ml/min/1.73m2 at birth and increases to mature levels around 1 year of age, reflecting growth in both glomerular function and relative body surface area. clinical studies in pediatric patients younger than 1 year of age have been conducted in patients with the following minimum egfr: 31 ml/min/1.73m2 (age 2 to 7 days), 38 ml/min/1.73m2 (age 8 to 28 days), 62 ml/min/1.73m2 (age 1 to 6 months), and 83 ml/min/1.73m2 (age 6 to 12 months). single and repeat-dose toxicity studies in neonatal and juvenile rats did not reveal findings suggestive of a specific risk for use in pediatric patients including term neonates and infants. in clinical studies of gadavist, 1,377 patients were 65 years of age and over, while 104 patients were 80 years of age and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, use of gadavist in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. no dose adjustment according to age is necessary in this population. prior to administration of gadavist, screen all patients for renal dysfunction by obtaining a history and/or laboratory tests [see warnings and precautions (5.2)] . no dosage adjustment is recommended for patients with renal impairment. gadavist can be removed from the body by hemodialysis [see warnings and precautions (5.2) and clinical pharmacology (12.3)].

GADAVIST- gadobutrol injection United States - English - NLM (National Library of Medicine)

gadavist- gadobutrol injection

bayer healthcare pharmaceuticals inc. - gadobutrol (unii: 1bj477io2l) (gadolinium cation (3+) - unii:azv954tz9n) - gadavist is indicated for use with magnetic resonance imaging (mri) in adult and pediatric patients, including term neonates, to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system. gadavist is indicated for use with mri in adult patients to assess the presence and extent of malignant breast disease. gadavist is indicated for use in magnetic resonance angiography (mra) in adult and pediatric patients (including term neonates) to evaluate known or suspected supra-aortic or renal artery disease. gadavist is indicated for use in cardiac mri (cmri) to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in adult patients with known or suspected coronary artery disease (cad). gadavist is contraindicated in patients with history of severe hypersensitivity reactions to gadavist. gbcas cross the placenta and result in fetal exposure and gadolinium retention. the human data on the association between gbcas and adverse fetal outcomes are limited and inconclusive (see data) . in animal reproduction studies, although teratogenicity was not observed, embryolethality was observed in monkeys, rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 times and above the recommended human dose. retardation of embryonal development was observed in rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 and 12 times, respectively, the recommended human dose (see data). because of the potential risks of gadolinium to the fetus, use gadavist only if imaging is essential during pregnancy and cannot be delayed. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and is 15 to 20%, respectively. contrast enhancement is visualized in the placenta and fetal tissues after maternal gbca administration. cohort studies and case reports on exposure to gbcas during pregnancy have not reported a clear association between gbcas and adverse effects in the exposed neonates. however, a retrospective cohort study, comparing pregnant women who had a gbca mri to pregnant women who did not have an mri, reported a higher occurrence of stillbirths and neonatal deaths in the group receiving gbca mri. limitations of this study include a lack of comparison with non-contrast mri and lack of information about the maternal indication for mri. overall, these data preclude a reliable evaluation of the potential risk of adverse fetal outcomes with the use of gbcas in pregnancy. gbcas administered to pregnant non-human primates (0.1 mmol/kg on gestational days 85 and 135) result in measurable gadolinium concentration in the offspring in bone, brain, skin, liver, kidney, and spleen for at least 7 months. gbcas administered to pregnant mice (2 mmol/kg daily on gestational days 16 through 19) result in measurable gadolinium concentrations in the pups in bone, brain, kidney, liver, blood, muscle, and spleen at one month postnatal age. embryolethality was observed when gadobutrol was administered intravenously to monkeys during organogenesis at doses 8 times the recommended single human dose (based on body surface area); gadobutrol was not maternally toxic or teratogenic at this dose. embryolethality and retardation of embryonal development also occurred in pregnant rats receiving maternally toxic doses of gadobutrol (≥ 7.5 mmol/kg body weight; equivalent to 12 times the human dose based on body surface area) and in pregnant rabbits (≥ 2.5 mmol/kg body weight; equivalent to 8 times the recommended human dose based on body surface area). in rabbits, this finding occurred without evidence of pronounced maternal toxicity and with minimal placental transfer (0.01% of the administered dose detected in the fetuses). because pregnant animals received repeated daily doses of gadavist, their overall exposure was significantly higher than that achieved with the standard single dose administered to humans. there are no data on the presence of gadobutrol in human milk, the effects on the breastfed infant, or the effects on milk production. however, published lactation data on other gbcas indicate that 0.01 to 0.04% of the maternal gadolinium dose is present in breast milk and there is limited gbca gastrointestinal absorption in the breast-fed infant. gadobutrol is present in rat milk (see data). the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for gadavist and any potential adverse effects on the breastfed infant from gadavist or from the underlying maternal condition. in lactating rats receiving 0.5 mmol/kg of intravenous [153 gd]-gadobutrol, 0.01% of the total administered radioactivity was transferred to the pup via maternal milk within 3 hours after administration, and the gastrointestinal absorption is poor (approximately 5% of the dose orally administered was excreted in the urine). the safety and effectiveness of gadavist have been established in pediatric patients, including term neonates, for use with mri to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system and for use in mra to evaluate known or suspected supra-aortic or renal artery disease. use of gadavist in these indications is supported by adequate and well-controlled studies in adults and supportive imaging data in two studies in 135 patients 2 to less than 18 years of age and 44 patients less than 2 years of age with cns and non-cns lesions, and pharmacokinetic data in 130 patients 2 to less than 18 years of age and 43 patients less than 2 years of age, including term neonates [see clinical pharmacology (12.3) and clinical studies (14.1)] . the frequency, type, and severity of adverse reactions in pediatric patients were similar to adverse reactions in adults [ see adverse reactions (6.1)] . no dose adjustment according to age is necessary in pediatric patients [see dosage and administration (2.1), clinical pharmacology (12.3), and clinical studies (14.1)] . the safety and effectiveness of gadavist have not been established in preterm neonates for any indication or in pediatric patients of any age for use with mri to assess the presence and extent of malignant breast disease, or for use in cmri to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in patients with known or suspected coronary artery disease (cad). no case of nsf associated with gadavist or any other gbca has been identified in pediatric patients ages 6 years and younger. pharmacokinetic studies suggest that clearance of gadavist is similar in pediatric patients and adults, including pediatric patients age younger than 2 years. no increased risk factor for nsf has been identified in juvenile animal studies of gadobutrol. normal estimated gfr (egfr) is around 30 ml/min/1.73m2 at birth and increases to mature levels around 1 year of age, reflecting growth in both glomerular function and relative body surface area. clinical studies in pediatric patients younger than 1 year of age have been conducted in patients with the following minimum egfr: 31 ml/min/1.73m2 (age 2 to 7 days), 38 ml/min/1.73m2 (age 8 to 28 days), 62 ml/min/1.73m2 (age 1 to 6 months), and 83 ml/min/1.73m2 (age 6 to 12 months). single and repeat-dose toxicity studies in neonatal and juvenile rats did not reveal findings suggestive of a specific risk for use in pediatric patients including term neonates and infants. in clinical studies of gadavist, 1,377 patients were 65 years of age and over, while 104 patients were 80 years of age and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, use of gadavist in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. no dose adjustment according to age is necessary in this population. prior to administration of gadavist, screen all patients for renal dysfunction by obtaining a history and/or laboratory tests [see warnings and precautions (5.2)] . no dosage adjustment is recommended for patients with renal impairment. gadavist can be removed from the body by hemodialysis [see warnings and precautions (5.1) and clinical pharmacology (12.3)].

GADAVIST- gadobutrol injection United States - English - NLM (National Library of Medicine)

gadavist- gadobutrol injection

bayer healthcare pharmaceuticals inc. - gadobutrol (unii: 1bj477io2l) (gadolinium cation (3+) - unii:azv954tz9n) - gadobutrol 604.72 mg in 1 ml - gadavist is indicated for use with magnetic resonance imaging (mri) in adult and pediatric patients, including term neonates to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system. gadavist is indicated for use with mri in adult patients to assess the presence and extent of malignant breast disease. gadavist is indicated for use in magnetic resonance angiography (mra) in adult and pediatric patients, including term neonates, to evaluate known or suspected supra-aortic or renal artery disease . gadavist is indicated for use in cardiac mri (cmri) to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in adult patients with known or suspected coronary artery disease (cad). gadavist is contraindicated in patients with history of severe hypersensitivity reactions to gadavist. gbcas cross the placenta and result in fetal exposure and gadolinium retention. the human data on the association between gbcas and adverse fetal outcomes are limited and inconclusive (see data) . in animal reproduction studies, although teratogenicity was not observed, embryolethality was observed in monkeys, rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 times and above the recommended human dose. retardation of embryonal development was observed in rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 and 12 times, respectively, the recommended human dose (see data). because of the potential risks of gadolinium to the fetus, use gadavist only if imaging is essential during pregnancy and cannot be delayed. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and is 15 to 20%, respectively. contrast enhancement is visualized in the placenta and fetal tissues after maternal gbca administration. cohort studies and case reports on exposure to gbcas during pregnancy have not reported a clear association between gbcas and adverse effects in the exposed neonates. however, a retrospective cohort study, comparing pregnant women who had a gbca mri to pregnant women who did not have an mri, reported a higher occurrence of stillbirths and neonatal deaths in the group receiving gbca mri. limitations of this study include a lack of comparison with non-contrast mri and lack of information about the maternal indication for mri. overall, these data preclude a reliable evaluation of the potential risk of adverse fetal outcomes with the use of gbcas in pregnancy. gbcas administered to pregnant non-human primates (0.1 mmol/kg on gestational days 85 and 135) result in measurable gadolinium concentration in the offspring in bone, brain, skin, liver, kidney, and spleen for at least 7 months. gbcas administered to pregnant mice (2 mmol/kg daily on gestational days 16 through 19) result in measurable gadolinium concentrations in the pups in bone, brain, kidney, liver, blood, muscle, and spleen at one month postnatal age. embryolethality was observed when gadobutrol was administered intravenously to monkeys during organogenesis at doses 8 times the recommended single human dose (based on body surface area); gadobutrol was not maternally toxic or teratogenic at this dose. embryolethality and retardation of embryonal development also occurred in pregnant rats receiving maternally toxic doses of gadobutrol (≥ 7.5 mmol/kg body weight; equivalent to 12 times the human dose based on body surface area) and in pregnant rabbits (≥ 2.5 mmol/kg body weight; equivalent to 8 times the recommended human dose based on body surface area). in rabbits, this finding occurred without evidence of pronounced maternal toxicity and with minimal placental transfer (0.01% of the administered dose detected in the fetuses). because pregnant animals received repeated daily doses of gadavist, their overall exposure was significantly higher than that achieved with the standard single dose administered to humans there are no data on the presence of gadobutrol in human milk, the effects on the breastfed infant, or the effects on milk production. however, published lactation data on other gbcas indicate that 0.01 to 0.04% of the maternal gadolinium dose is present in breast milk and there is limited gbca gastrointestinal absorption in the breast-fed infant. gadobutrol is present in rat milk (see data). the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for gadavist and any potential adverse effects on the breastfed infant from gadavist or from the underlying maternal condition. in lactating rats receiving 0.5 mmol/kg of intravenous [153 gd]-gadobutrol, 0.01% of the total administered radioactivity was transferred to the pup via maternal milk within 3 hours after administration, and the gastrointestinal absorption is poor (approximately 5% of the dose orally administered was excreted in the urine). the safety and effectiveness of gadavist have been established in pediatric patients, including term neonates, for use with mri to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system and for use in mra to evaluate known or suspected supra-aortic or renal artery disease. use of gadavist in these indications is supported by adequate and well-controlled studies in adults and supportive imaging data in two studies in 135 patients 2 to less than 18 years of age and 44 patients less than 2 years of age with cns and non-cns lesions, and pharmacokinetic data in 130 patients 2 to less than 18 years of age and 43 patients less than 2 years of age, including term neonates [see clinical pharmacology (12.3) and clinical studies (14.1) ]. the frequency, type, and severity of adverse reactions in pediatric patients were similar to adverse reactions in adults [see adverse reactions (6.1)] . no dose adjustment according to age is necessary in pediatric patients [see dosage and administration (2.1), clinical pharmacology (12.3), and clinical studies (14.1)] . the safety and effectiveness of gadavist have not been established in preterm neonates for any indication or in pediatric patients of any age for use with mri to assess the presence and extent of malignant breast disease, or for use in cmri to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in patients with known or suspected coronary artery disease (cad). no case of nsf associated with gadavist or any other gbca has been identified in pediatric patients ages 6 years and younger. pharmacokinetic studies suggest that clearance of gadavist is similar in pediatric patients and adults, including pediatric patients age younger than 2 years. no increased risk factor for nsf has been identified in juvenile animal studies of gadobutrol. normal estimated gfr (egfr) is around 30 ml/min/1.73m2 at birth and increases to mature levels around 1 year of age, reflecting growth in both glomerular function and relative body surface area. clinical studies in pediatric patients younger than 1 year of age have been conducted in patients with the following minimum egfr: 31 ml/min/1.73m2 (age 2 to 7 days), 38 ml/min/1.73m2 (age 8 to 28 days), 62 ml/min/1.73m2 (age 1 to 6 months), and 83 ml/min/1.73m2 (age 6 to 12 months). single and repeat-dose toxicity studies in neonatal and juvenile rats did not reveal findings suggestive of a specific risk for use in pediatric patients including term neonates and infants. in clinical studies of gadavist, 1,377 patients were 65 years of age and over, while 104 patients  were 80 years of age and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, use of gadavist in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. no dose adjustment according to age is necessary in this population. prior to administration of gadavist, screen all patients for renal dysfunction by obtaining a history and/or laboratory tests [see warnings and precautions (5.2)] . no dosage adjustment is recommended for patients with renal impairment. gadavist can be removed from the body by hemodialysis [see warnings and precautions (5.2) and clinical pharmacology (12.3)] .

DAVID GRAYS DY-FLY PLUS FLY BAIT Australia - English - APVMA (Australian Pesticides and Veterinary Medicines Authority)

david grays dy-fly plus fly bait

david gray & co. pty limited - methomyl; (z)-9 tricosene - bait - methomyl carbamate-methylcarbamate active 10.0 g/kg; (z)-9 tricosene biological-pheromone-insect active 0.5 g/kg - insecticide - abattoir | animal housing | feedlot | food processing and/or preserving plant | industrial site and/or factory | pest cont. refu - common housefly | house fly

DAVID GRAYS RTU ANTEX OUTDOOR PEST CONTROL Australia - English - APVMA (Australian Pesticides and Veterinary Medicines Authority)

david grays rtu antex outdoor pest control

david gray & co. pty limited - bifenthrin - emulsion - bifenthrin pyrethroid active 0.5 g/l - insecticide - building foundations - around | buildings - around | domestic area - outdoors | house - under | air vents | around doors | aroun - ant | cockroach | flea | fly | mosquito | paper nest wasp | spider | adult mosquitoes | argentine ant | large cockroach | papernest wasps | pharaoh ant | small cockroach